Eigenstructures of Spatial Design Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Docking essential dynamics eigenstructures.

This article describes our attempts to dock the targets in CAPRI Rounds 3-5 using Hex 4.2, and it introduces a novel essential dynamics approach to generate multiple feasible conformations for docking. In the blind trial, the basic Hex algorithm found 1 high-accuracy solution for CAPRI Target 12, and several further medium- and low-accuracy solutions for Targets 11, 12, 13, and 14. Subsequent a...

متن کامل

Eigenstructures of MIMO Fading Channel Correlation Matrices and Optimum Linear Precoding Designs for Maximum Ergodic Capacity

The ergodic capacity of MIMO frequency-flat and -selective channels depends greatly on the eigenvalue distribution of spatial correlation matrices. Knowing the eigenstructure of correlation matrices at the transmitter is very important to enhance the capacity of the system. This fact becomes of great importance in MIMO wireless systems where because of the fast changing nature of the underlying...

متن کامل

Spatial Weight Matrices

Each nonnegative matrix, ( : , 1,.., ) ij W w i j n   , is a possible spatial weight matrix summarizing spatial relations between n spatial units. Here each spatial weight, ij w , typically reflects the “spatial influence” of unit j on unit i . Following standard convention, we here exclude “self influence” by assuming that 0 ii w  for all 1,.., i n  (so that W has a zero diagonal). The fol...

متن کامل

Diagonal Spatial Stiffness Matrices

In this work we study in detail the conditions under which the stiffness matrix of a spatial system can be transformed into block-diagonal and diagonal form. That is the existence of a coordinate frame in which the stiffness matrix takes on these simple forms. The consequences of a block-diagonal or diagonal stiffness matrix for the invariants of the system, principal screws, von Mises’ invaria...

متن کامل

Spatial Weights: Constructing Weight-Compatible Exchange Matrices from Proximity Matrices

Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2002

ISSN: 0047-259X

DOI: 10.1006/jmva.2000.1976